1) 지식 창고는 본인이 작성한 콘텐츠(팁/노하우/리소스/강좌 등)을 무료 혹은 가상화폐인 납포인트를 통해 공유하는 공간입니다.
2) 본인이 작성한 콘텐츠에 대해서만 지식 창고에 등록할 수 있으며, 저작권에 위배되는 콘텐츠는 사전경고 없이 삭제될 수 있습니다.
3) 콘텐츠 구매 및 첨부파일 다운로드는 회원그룹 '연구원' 이상 가능하오니, 경험치를 쌓아 진급한 후에 이용 부탁드립니다.
4) 무료 콘텐츠의 본문은 구매절차 없이 즉시 이용할 수 있으며, 판매 납포인트가 있는 콘텐츠는 구매 후 이용할 수 있습니다.
5) 콘텐츠 판매에 따른 납포인트 수익은 지정한 비율(50%)에 따라 판매자에게 지급하며, 납포인트 수익을 통해 진급을 빨리할 수 있습니다.
6) 구매 후 평가를 하면 구매 납포인트의 20%를 돌려 드립니다.
판매자 | 아크마 | 판매 납포인트 | 무료 | 평점 | 0점 / 총 0명 참여 |
---|
Introduction
A microcontroller is often used to interface with sensors and generate control actions based on information
gathered from sensors. For reliability and completeness, more than one sensor is generally used. If different
sensors are employed to provide measurement of the same physical quantity, a better estimation can often be
obtained by calculating weighted average of the individual measurements, assuming the noises they carry are not
statistically correlated.
Sometimes it is useful to have sensors that measure different physical variables and the combined information is
used for control decision making. The operation to combine information from such multi-modal sensors is called
sensory fusion.
Kalman filters can be used to derive the best estimation by combining sensory input from different sources. It has
been used most extensively in navigation since it was invented in 1960. Recently, it has been used in high-end
GPS navigation systems to improve performance.
The concept of Kalman filtering can be illustrated in Figure 1. Suppose a human is traveling in one dimension. He
has a positioning device that gives him estimations of where he is at time t1, t2, and t3, with some variance. For
example, if the measurement says the person is at position t2, the real position could be anywhere around t2 with
a certain distribution function as shown in the figure.